A Million Arbitrary Digits

With a thousand appetizers …

Back before researchers and programmers had easy access to random (or pseudo-random) numbers, organizations would publish tables of random digits. One important one was done by the RAND Corporation: A Million Random Digits with 100,000 Normal Deviates. It listed the random digits in groups of 5, 10 groups (=50 digits) per line.

Since I’ve been generating arbitrary numbers from images, I thought it would be appropriate to make available a million arbitrary digits (that’s an uncompressed tab-delimited file). They were generated from the usual image, using the luminance property, with a sampling rate of 71.

While a million digits is too many to show, below are the first 1,000 to give you a taste. Below that list is some more information about the distribution of the digits.

 

35434 53334 44314 65443 33424 23332 24343 33343 44355 14334
54434 45243 32332 33454 33533 34333 63535 43435 23432 33442
34433 44343 22554 45333 35224 32342 33436 44443 43322 34454
45436 33333 34443 34444 64473 32524 52534 35324 33332 23467
54334 42333 35544 44445 33313 35345 44442 33362 24655 43534
34334 33332 42347 74534 42234 33635 33352 23313 44333 54432
54362 24553 53425 33334 23242 43347 54423 46334 24334 33332
35323 32333 64533 44333 24433 54335 33334 33334 44242 44433
33223 37333 43443 35323 32234 64534 42423 24334 55534 34234
23354 33344 44644 33123 34315 35442 36333 32323 56543 43443
33447 24633 45334 33353 64344 44544 63226 44354 25344 35343
42222 44421 42433 24337 37343 43433 13343 45445 44443 62223
35533 35355 36342 43222 45622 32533 23244 34343 43233 23333
23554 34344 52133 34333 33353 36444 33222 52444 33442 23332
23336 43443 33352 22434 44336 32232 34633 53354 36343 24332
42224 34232 33343 23344 44363 44352 22454 34124 32244 35344
34464 35233 54343 53533 36322 23444 32253 44363 43332 32364
15523 12234 46243 44345 44234 43344 54534 33313 13346 53355
44373 43333 22235 24323 22432 33332 44546 53234 44222 53343
42323 22342 63645 44364 43433 23525 32133 52233 33333 54537

 

Here’s some information about the distribution of the digits, both statistics and visualized.

 

Mean 3.47
Median 3
Standard deviation 1.80

 

Distribution of arbitrary digits

While it’s not surprising that the distribution of digits isn’t uniform, it is striking just how few occurrences there are of 0 and especially of 9.

Single digits aren’t necessarily that useful, so we might take pairs of consecutive digits to form numbers between 0 and 100. So a 3 followed by a 4 would become 34. Given that the digits are skewed, the two digit numbers will be skewed as well. Here’s what their distribution looks like:

 

The overall distribution is roughly (though not exactly) replicated at each decade, which makes sense.

Anyway, useful? Stay tuned …

 

Posted in FMOA